Computational modeling of the enolization in a direct mechanism of racemization of the aspartic acid residue.

نویسندگان

  • Ohgi Takahashi
  • Kana Kobayashi
  • Akifumi Oda
چکیده

The rapid racemization of aspartic acid (Asp) residues in peptides and proteins is due mainly to the succinimide intermediate. However, there should be another mechanism for Asp racemization without intermediacy of the succinimide. The direct H-atom abstraction from the C(alpha)-atom that leads to the enol form of the Asp residue is one possibility. In another study, we have computationally predicted that the corresponding enolization in the succinimide intermediate occurs by assistance of two H(2)O molecules. In the present study, we, therefore, investigated the similar two-H(2)O-assisted enolization for an Asp-containing model compound by the same computational method as before (B3LYP/6-31+G**). Rather surprisingly, the activation barrier for the two-H(2)O-assisted enolization of the Asp residue (protonated form) was calculated to be almost equal to that for the corresponding succinimide. Therefore, an Asp residue is expected to be prone to enolization to almost the same degree as the corresponding succinimide form, and the 'direct' (i.e., non-succinimide-mediated) mechanism of Asp racemization may compete with the succinimide-mediated mechanism.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two-water-assisted racemization of the succinimide intermediate formed in proteins. A computational model study

Racemization of aspartic acid (Asp) residues in proteins plays an important role in the molecular biology of aging. In the widely accepted mechanism of the Asp racemization, a succinimide (SI) intermediate is the species which actually undergo the direct racemization. In the present study, a two-water-assisted mechanism of the SI racemization was computationally investigated using a model compo...

متن کامل

Racemization of the Succinimide Intermediate Formed in Proteins and Peptides: A Computational Study of the Mechanism Catalyzed by Dihydrogen Phosphate Ion

In proteins and peptides, d-aspartic acid (d-Asp) and d-β-Asp residues can be spontaneously formed via racemization of the succinimide intermediate formed from l-Asp and l-asparagine (l-Asn) residues. These biologically uncommon amino acid residues are known to have relevance to aging and pathologies. Although nonenzymatic, the succinimide racemization will not occur without a catalyst at room ...

متن کامل

Racemization of Serine Residues Catalyzed by Dihydrogen Phosphate Ion: A Computational Study

Spontaneous, nonenzymatic reactions in proteins are known to have relevance to aging and age-related diseases, such as cataract and Alzheimer’s disease. Among such reactions is the racemization of Ser residues, but its mechanism in vivo remains to be clarified. The most likely intermediate is an enol. Although being nonenzymatic, the enolization would need to be catalyzed to occur at a biologic...

متن کامل

Tripeptide arginyl-glycyl-aspartic acid (RGD) for delivery of Cyclophosphamide anticancer drug: A computational approach

Density functional theory (DFT) calculations were performed on tripeptide arginyl-glycyl-aspartic acid (RGD) as an efficient drug carrier to deliver the commercially famous cyclophosphamide (CP) anticancer drug within ethanol solution. The most negative binding energy (-5.22 kcal/mol) was measured for the CP-RGD-7 created through the H-bond interaction between the P=O (phosphoryl) oxygen atom o...

متن کامل

Concerted and stepwise dehydration mechanisms observed in wild-type and mutated Escherichia coli dTDP-glucose 4,6-dehydratase.

The conversion of dTDP-glucose into dTDP-4-keto-6-deoxyglucose by Escherichia coli dTDP-glucose 4,6-dehydratase (4,6-dehydratase) takes place in the active site in three steps: dehydrogenation to dTDP-4-ketoglucose, dehydration to dTDP-4-ketoglucose-5,6-ene, and rereduction of C6 to the methyl group. The 4,6-dehydratase makes use of tightly bound NAD(+) as the coenzyme for transiently oxidizing...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Chemistry & biodiversity

دوره 7 6  شماره 

صفحات  -

تاریخ انتشار 2010